LIS007789110B2 ### (12) United States Patent ### Marini ## (10) Patent No.: US 7,789,110 B2 (45) Date of Patent: Sep. 7, 2010 | (54) | KIT FOR INFLATING AND REPAIRING INFLATABLE ARTICLES, IN PARTICULAR TYRES | | | | | | | | | |----------------------------|--|---|--|--|--|--|--|--|--| | (75) | Inventor: | Maurizio Marini, Pesaro (IT) | | | | | | | | | (73) | Assignee: | Tek Global S.R.L., Pesaro (PU) (IT) | | | | | | | | | (*) | Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 556 days. | | | | | | | | | | (21) | Appl. No.: | 10/591,033 | | | | | | | | | (22) | PCT Filed | Feb. 8, 2005 | | | | | | | | | (86) | PCT No.: PCT/IB2005/000309 | | | | | | | | | | | § 371 (c)(1
(2), (4) Da |),
te: Jul. 26, 2007 | | | | | | | | | (87) | PCT Pub. No.: WO2005/085028 | | | | | | | | | | | PCT Pub. | Date: Sep. 15, 2005 | | | | | | | | | (65) | Prior Publication Data | | | | | | | | | | | US 2008/0 | 029181 A1 Feb. 7, 2008 | | | | | | | | | (30) | Foreign Application Priority Data | | | | | | | | | | Fe | b. 27, 2004 | (IT) TO2004A0117 | | | | | | | | | (51) | Int. Cl.
B65B 1/04
B65B 31/0 | , | | | | | | | | | | | 141/38 ; 141/98; 152/415 | | | | | | | | | (58) | Field of Classification Search | | | | | | | | | | | See applic | ation file for complete search history. | | | | | | | | | (56) | References Cited | | | | | | | | | | | U. | S. PATENT DOCUMENTS | | | | | | | | | 4,765,367 A * 8/1988 Scott | | | | | | | | | | 5,403,417 A * 4/1995 Dudley et al. 141/38 | 5,908,145 | A * | 6/1999 | Jaksa 141/38 | |-----------|------|---------|--------------------------| | 6,176,285 | B1* | 1/2001 | Gerresheim et al 152/509 | | 6,283,172 | B1 | 9/2001 | Thurner | | 6,345,650 | B1* | 2/2002 | Paasch et al 141/38 | | 6,412,524 | B1* | 7/2002 | Fogal, Sr 141/38 | | 6,736,170 | B2* | 5/2004 | Eriksen et al 141/38 | | 6,766,834 | B1* | 7/2004 | Eckhardt 141/38 | | 6,789,581 | B2* | 9/2004 | Cowan et al 141/38 | | 6,889,723 | B2* | 5/2005 | Gerresheim et al 141/38 | | 6,964,284 | B2* | 11/2005 | Eckhardt 141/38 | | 6,968,869 | B2* | 11/2005 | Eckhardt 141/38 | | 7,021,348 | B2* | 4/2006 | Eriksen et al 141/38 | | 7,028,720 | B2 * | 4/2006 | Eckhardt 141/38 | | | | | | ### (Continued) ### FOREIGN PATENT DOCUMENTS DE 198 46 451 A1 4/2000 ### (Continued) Primary Examiner—Gregory L Huson Assistant Examiner—Nicolas A Arnett (74) Attorney, Agent, or Firm—Ladas & Parry LLP ### (57) ABSTRACT A kit for inflating and repairing inflatable articles, in particular tires, the kit having a compressor assembly, a container of sealing liquid and connectors for connecting the container to the compressor assembly and to an inflatable article for repair or inflation; the compressor assembly being housed in an outer casing defining a seat for the container of sealing liquid. The container is housed removably in the seat and functionally connected to the compressor assembly so as to form a compact unit ready for use. ### 31 Claims, 4 Drawing Sheets # **US 7,789,110 B2**Page 2 | | HC | DATENIT | DOCLIMENTS | DE | 101 06 468 A1 | 8/2002 | |--------------------------|-----------------------|---------|----------------|----------------|-----------------|--------| | | U.S. PATENT DOCUMENTS | | | EP | 08 15 8282 | 7/2008 | | 2003/004 | 47652 A1 | 3/2003 | Eckhardt | WO | 00/21875 A1 | 4/2000 | | 2003/00: | 003/0056851 A1 | 3/2003 | Eriksen et al. | WO | WO 03/004328 A1 | 1/2003 | | | | | | WO | 03/041949 | 5/2003 | | FOREIGN PATENT DOCUMENTS | | | WO | 2004/041649 A1 | 5/2004 | | | DE | DM/05 | 8926 | 1/2002 | * cited | by examiner | | Sep. 7, 2010 Sep. 7, 2010 ### KIT FOR INFLATING AND REPAIRING INFLATABLE ARTICLES, IN PARTICULAR TYRES ### TECHNICAL FIELD The present invention relates to a kit for inflating and repairing inflatable articles, in particular, tyres. #### **BACKGROUND ART** Sealing liquids for fast repair of inflatable articles are known. The liquid is fed into the article for repair by means of compressed air, e.g. by means of a compressor, penetrates any holes or slits in the article, and sets on contact with air, thus rapidly sealing the article. Such liquids are widely used for fast tyre repair, to which the following description refers for the sake of clarity and purely by way of example. Vehicle spare wheels pose a number of well-known problems, not least of which are their considerable size and weight. More specifically, if the wheel is housed inside the vehicle, normally in a compartment to the side of or beneath the boot, the capacity of the boot is greatly reduced, and the tyre is difficult to remove, especially when the boot is full. invention will be described by way of example to the accompanying drawings, in which: FIG. 1 shows a view in perspective of a ing a container of sealing liquid and in accompanying drawings. Conversely, if stowed outside the vehicle, normally in a compartment beneath the floor, or attached to the rear door, the wheel can easily be stolen and is still not easy to remove. 30 the FIG. 1 kit; Given the good road conditions in most countries, punctures are now rare, so that changing a wheel can prove extremely difficult, if not impossible, on account of the bolts being locked tight, and in any case is awkward by being performed in critical conditions (traffic, poor lighting, bad weather). Considerable advantage is to be gained, therefore, by replacing the spare wheel with a repair and inflation kit comprising a small compressor and a container of sealing liquid, which can be stowed easily in a special compartment or in the boot of the car. In addition to the big reduction in size and weight, puncture repair is also made faster and easier: as opposed to changing the wheel, the compressor is simply connected to a current outlet on the vehicle, the container of sealing liquid is connected to the compressor and to the valve of the tyre for repair, and the compressor is started to feed the liquid into the tyre. For this purpose, the container normally has a dispenser unit comprising an inlet conduit and an outlet conduit connected respectively, by respective conduits, to the compressor and the valve of the tyre for repair. The container and the compressor are normally separate parts that must be connected prior to use, and which at most are housed for convenience inside the same holder. This therefore involves additional work prior to use. In one known solution, the container is fitted permanently to the dispenser unit, which incorporates a sealing device. The container, in itself open, is therefore undetachable from the dispenser unit. Another drawback of this solution is that, when the use-by date of the sealing liquid expires, both the container and the dispenser unit must be replaced, thus increasing cost. In another known solution, the container itself is sealed, e.g. by a sealing membrane, which is split when the container is fitted to the dispenser unit. This means also the dispenser 65 unit must be fitted to the container just prior to use, thus making additional work. 2 ### DISCLOSURE OF INVENTION It is an object of the present invention to provide a kit for repairing and inflating inflatable articles, designed to eliminate the aforementioned drawbacks typically associated with known kits. According to the present invention, there is provided a kit for inflating and repairing inflatable articles, in particular, tyres; the kit comprising a compressor assembly, a container of sealing liquid, and connecting means for connecting the container to the compressor assembly and to an inflatable article for repair or inflation, and being characterized by comprising an outer casing housing said compressor assembly and defining a seat for the container of sealing liquid, said container being housed removably in said seat, and by comprising connecting means for stably connecting said container to said compressor assembly, so that the container, when housed in said seat, is maintained functionally connected to said compressor assembly. ### BRIEF DESCRIPTION OF THE DRAWINGS A preferred, non-limiting embodiment of the present invention will be described by way of example with reference to the accompanying drawings, in which: FIG. 1 shows a view in perspective of a repair kit comprising a container of sealing liquid and in accordance with the present invention; FIG. 2 shows a partly disassembled view in perspective of the FIG. 1 kit; FIGS. 3 and 4 show a rear view and underside view in perspective respectively of the FIG. 1 kit partly disassembled; FIGS. 5 and 6 show sections, along line V-V in FIG. 2, of the container and a dispenser unit of the FIG. 2 kit assembled together: FIG. 7 shows a schematic of a pneumatic circuit connected to the FIG. 2 kit dispenser unit. ## BEST MODE FOR CARRYING OUT THE INVENTION Number 1 in FIGS. 1 to 4 indicates as a whole a kit for fast repair of inflatable articles, in particular, tyres. Kit 1 substantially comprises an electric compressor assembly 2; a container 3 of sealing liquid; a first hose 4 connecting container 3 to compressor assembly 2; and a second hose 5 connecting container 3 to a valve (not shown) of the tyre. In known manner not shown, compressor assembly 2 comprises an electric motor and a compressor—powered by the electric motor—which are housed inside an outer casing 6. Casing 6 is substantially parallelepiped-shaped and, at one longitudinal end, defines a seat 7 for housing container 3 upside down. More specifically, seat 7 is bounded laterally by a substantially semicylindrical end wall 10 of casing 6, and at the bottom by a circular base 14 projecting from end wall 10. Container 3 comprises a vessel 15, preferably in the form of a bottle, containing the sealing liquid and having an externally threaded neck 16 defining an opening 17 (FIGS. 5 and 6); and a valve device 18 housed in opening 17. Valve device 18 forms an integral part of container 3, to ensure the container is closed fluidtight when detached from the rest of kit 1, as explained in detail below. Valve device **18** comprises a body **19** having a cylindrical lateral wall **20**, of axis A, inserted in fluidtight manner inside neck **16**, and a portion **20***a* of which extends beyond neck **16**, into vessel **15**, and is closed at one end by an end wall **21**. Portion 20a has two circumferential series of holes 24, 25 communicating with the inside of vessel 15, spaced axially apart, and located close to end wall 21 and close to neck 16 respectively. Body 19 of valve device 18 also comprises an inner member 26 defined by a tubular rod 27 of axis A, and by a supporting ring 28 fixed inside an open end of body 19 and connected integrally to tubular rod 27 by a number of spokes 29 forming a number of axial passages 29a. Rod 27 has a first end portion 27*a* close to end wall 21, and 10 a conveniently flanged second end portion 27*b* projecting axially outwards of body 19, and defines internally an axial passage 27*c*. Valve device 18 comprises a tubular slide 30, which slides axially inside the annular chamber 36 formed between body 15 19 and rod 27. Slide 30 is maintained in an axial stop position against end wall 21 by a helical spring 31 compressed axially between slide 30 and supporting ring 28. Slide 30 has a circumferential series of holes 32 formed at an outer annular groove 33 dividing the slide into two portions 27, 38. Slide 30 also comprises two pairs of outer, axially spaced sealing rings (O-rings) 34a, 34b and 35a, 35b, which are housed in respective annular seats and form a sliding seal between slide 30 and body 19. The two pairs of O-rings 34a, 34b and 35a, 35b are located on axially opposite sides of 25 holes 32. More specifically, O-rings 34a, 34b are carried by portion 37 facing end wall 21, and O-rings 35a, 35b are carried by portion 38 facing end portion 27b of rod 27. In said axial stop position of slide 30, O-ring 34a is located between holes 24 and end wall 21; O-ring 34b is located between holes 24 and holes 32; O-ring 35a is located between holes 25 and holes 32; and O-ring 35b is located on the axially opposite side of holes 25 to O-ring 35a. Portion 37 of slide 30 slides in fluidtight manner on rod 27, preferably with the interposition of an O-ring 38a on rod 27. 35 Portion 38 of slide 30 is larger in inside diameter than rod 27, and defines with rod 27 a chamber 39 open towards the flanged end portion 27b of rod 27 and communicating with holes 32. Kit 1 also comprises a dispenser unit 40, which is housed 40 stably but detachably inside a recess 44 in base 14 of casing 6, and is connected detachably to container 3 to fit it, upside down, to casing 6 (FIGS. 1, 5 and 6). More specifically, dispenser unit 40 substantially comprises a plug-like central portion 45 having a substantially 45 cylindrical lateral wall 46 and an end wall 47, which define an internally threaded cavity 48 into which neck 16 of vessel 15 is screwed; and a circular flange 68 extending radially from central portion 45 and defining a bayonet connection with corresponding fastening means 49 in base 14 of casing 6. Dispenser unit 40 also comprises a first tubular fitting 50 projecting radially from central portion 45 and defining a conduit 51 communicating with and radial with respect to a bottom portion 52 of cavity 48; and a substantially pipe-like second tubular fitting 53 projecting radially, close to end wall 55 47 of central portion 45, in a radial direction perpendicular to that of first tubular fitting 50. Second tubular fitting 53 defines a conduit 54 communicating coaxially with bottom portion 52 of cavity 48. When container 3 is screwed into dispenser unit 40, end 60 portion 27b of tubular rod 27—possibly fitted with an annular sealing member 69 on the end—cooperates in fluidtight manner with end wall 47 of central portion 45, so that the internal axial passage 27c of rod 27 communicates with and substantially constitutes an extension of conduit 54 (FIGS. 5 and 6). 65 Base 14 has lateral openings (one shown in FIG. 4) through which fittings 50, 53 are accessible from outside casing 6, 4 once dispenser unit **40** is bayonet connected inside recess **44** in base **14**, e.g. by rotating it 45° with respect to the FIG. **2** insertion position. First fitting 50 is connected to hose 5, which, when not in use, may be wound about the casing and housed inside a peripheral groove 56 in the casing; and second fitting 53 is connected to compressor 2 by hose 4. Conveniently, hose 4 is longer than required for connection to fitting 53, and is fitted on its free end with a fast-fit, e.g. lever-operated, coupling 58. Hose 4 is therefore normally connected to second fitting 53, but can be detached easily and connected directly to the article, e.g. a tyre, ball, dinghy, etc., if this simply needs inflating and not repair. Hose 4 is normally stowed almost entirely inside a seat 59 formed on the underside of casing 6, from which it extends along an underside groove 60 housing the end portion of hose 4 fitted with coupling 58. Second fitting 53 is located at a different height from first fitting 50, so as to avoid any interference with hose 5 wound about casing 6. Compressor assembly 2 has an electric power cable 61 fitted on the end with a connector 62 for connection to a current outlet on the vehicle. Cable 61 is normally housed in a seat 63 formed in a portion of casing 6 opposite seat 7 for container 3, and connector 62 is stowed inside a cavity 64 in seat 63. Compressor assembly 2 is conveniently provided with a gauge 65 and a switch 66. Kit 1 and particularly container 3 operate as follows. Kit 1 is an integrated preassembled unit, which is supplied ready for use as shown in FIG. 1. To repair an inflatable article, e.g. a tyre, hose 5 is simply connected to the tyre valve, and compressor assembly 2 activated The air pressure along hose 4, fitting 50, and internal passage 27c of rod 27, is transmitted to the end of annular chamber 36, and exerts thrust on the end surface of slide 30 adjacent to end wall 21. Slide 30 therefore moves, in opposition to spring 31, from the FIG. 5 rest position to the FIG. 6 position, in which O-rings 34a, 34b are interposed between holes 24 and holes 25, and O-ring 35a has moved past holes 25, so that holes 32 in slide 30 communicate with holes 25. Compressed air therefore flows through holes 24 into container 3, which is therefore pressurized, so that sealing liquid flows through holes 25 and holes 32 into chamber 39 in slide 30, and is fed along fitting 50 and hose 5 to the tyre. Device 18 therefore acts as a two-way, two-position, pneumatic valve. In the closed position (FIG. 5), the container is sealed; with pressure along the feed line defined by hose 4, device 18 opens automatically to allow compressed air into container 3, and simultaneous outflow of sealing liquid. The advantages of kit 1 according to the present invention will be clear from the foregoing description. In particular, kit 1 is a compact, integrated unit that can be stowed ready for use, with no additional work required, other than connection to the vehicle electric system and to the tyre. Container 3 with an integrated valve device 18 constitutes an independent sealed unit, regardless of whether or not it is connected to dispenser unit 40. After use, or when the sealing liquid use-by date expires (normally after a few years), only container 3 need be replaced. That is, dispenser unit 40 need not be replaced, and may be left permanently inside casing 6. Using a two-way valve device 18 closed stably in the absence of pressure along the feed line 4, sealing liquid leakage is prevented, even in abnormal conditions, such as overpressure in container 3 caused by high temperature inside the boot of a car parked in the sun. Using a valve device 18, container 3 is ready for use at all times, i.e. fitted permanently to kit 1. Container 3, in fact, is sealed but operated immediately in response to turning on the compressor. Unit 40 is preferably detachable from casing 6 and carried 5 by container 3. Clearly, changes may be made to kit 1 as described herein without, however, departing from the scope of the accompanying Claims. In particular, FIG. 7 shows a diagram of a pneumatic seal- 10 ing liquid dispensing circuit 80 comprising a three-way, three-position valve 81, a conduit 82 connected to second fitting 53, and an additional hose 83 connectable to the tyre. Valve 81 is input connected to the compressor of compressor assembly 2, and is output connected to conduit 82 and addi- 15 tional hose 83. Valve 81 is controlled by a hand-operated selector 85 located on casing 6 and cooperating with an on-switch 86 of compressor assembly 2. In use, selector 85 defines a disabling position, in which on-switch 86 is disabled and compressor 20 assembly 2 cannot be started, thus preventing it from being turned on accidentally; and a first and second enabling position, in which on-switch 86 is enabled to start the compressor. More specifically, in the first enabling position, valve 81 is penser unit 40 via second fitting 53 and disconnect additional hopes 83; and, in the second enabling position, valve 81 is switched automatically to connect the compressor to additional hose 83 and disconnect dispenser unit 40. Additional hose 83 is housed in casing 6, and enables compressor assembly 2 to be used quickly and easily to inflate a flat tyre. Pneumatic circuit 80 and hose 5 may also be connected to one or more hand-operated relief valves 87, to prevent overpressure in conduit 82 and hoses 5 and 83, or, when the compressor is off, to accurately adjust the pressure of the 35 inflatable article as required. The end of hose 5 connected to the tyre may be fitted with a non-return valve, to prevent sealing liquid leakage when hose 5 is detached from the tyre. Container 3 may also be connected to casing 6 by a click-on 40 coupling acting in a direction parallel to axis A. The invention claimed is: - 1. A kit for inflating and repairing inflatable articles; the kit comprising a compressor assembly (2), a container (3) of sealing liquid, and connecting means (4, 5) for connecting the 45 container to the compressor assembly (2) and to an inflatable article for repair or inflation, and being characterized by comprising an outer casing (6) housing said compressor assembly (2) and defining a seat (7) for the container (3) of sealing liquid, said container (3) being housed removably in 50 said seat (7), and by comprising container connecting means (4, 40) for stably connecting said container to said compressor assembly (2), so that the container, when housed in said seat (7), is maintained functionally connected to said compressor assembly (2), said kit further comprising an addi- 55 tional hose (83) cooperating with said inflatable article; and a three-way valve (81) input connected to said compressor assembly (2), and output connected to said container (3) and to said additional hose (83) to direct a stream of compressed air selectively to said container (3) or to said additional hose 60 - 2. A kit as claimed in claim 1, characterized in that said connecting means comprise a compressed-air feed line (4) for feeding compressed air from said compressor assembly (2) to said container (3); said container (3) comprising a vessel (15) having an opening (17), and a valve device (18) fitted in fluid-tight manner to the opening (17) and having an inlet (27c) connectable to said compressed-air feed line (4), and an outlet (29a) for the sealing liquid. - 3. A kit as claimed in claim 2, characterized in that said valve device (18) comprises at least one control member (30) movable, in response to pressurization of said compressed-air feed line (4), from a closed position, closing said valve device (18) and in which said inlet (27c) and said outlet (29a) are isolated from the inside of said container (3), to an open position in which said inlet (27c) and said outlet (29a) communicate with the inside of said container (3). - 4. A kit as claimed in claim 3, characterized in that said valve device (18) comprises elastic means (31) for keeping said control member (30) stably in said closed position in the absence of pressure to said inlet (27c). - 5. A kit as claimed in claim 2, characterized in that said container connection means comprise dispenser unit (40) connectable detachably to said container (3) and having an inlet fitting (53) connected in fluid-tight manner to said inlet (27c) of said valve device (18), and an outlet fitting (50) connected in fluid-tight manner to said outlet (29a) of said valve device (18). - 6. A kit as claimed in claim 5, characterized in that said dispenser unit is detachable from said casing. - 7. A kit as claimed in claim 6, characterized in that said seat switched automatically to connect the compressor to dis- 25 (7) comprises a base portion (14) having fast-fit fastening means (49) by which to secure said dispenser unit (40) to said casing (6). - 8. A kit as claimed in claim 7, characterized in that said fastening means (49) comprise a bayonet connection. - 9. A kit as claimed in claim 7, characterized in that said fastening means comprise a fast-fit click-on coupling. - 10. A kit as claimed in claim 5, characterized in that said dispenser unit (40) comprises a cavity (48) to which is fitted a neck (16) of said container (3) in an upside down position; said neck (16) defining said opening (17). - 11. A kit as claimed in claim 1, characterized in that said three-way valve (81) is controlled by a selector (85) which can be set to a disabling position, in which operation of said compressor assembly (2) is disabled; to a first enabling position, in which operation of said compressor assembly (2) is enabled, and said container (3) is connected fluidically to said compressor assembly (2); and to a second enabling position, in which operation of said compressor assembly (2) is enabled, and said additional hose (83) is connected fluidically to said compressor assembly (2). - 12. A kit as claimed in claim 11, characterized in that said connecting means comprise a compressed-air feed line (4) for feeding compressed air from said compressor assembly (2) to said container (3); said container (3) comprising a vessel (15) having an opening (17), and a valve device (18) fitted in fluid-tight manner to the opening (17) and having an inlet (27c) connectable to said compressed-air feed line (4), and an outlet (29a) for the sealing liquid. - 13. A kit as claimed in claim 12, characterized in that said valve device (18) comprises at least one control member (30) movable, in response to pressurization of said compressed-air feed line (4), from a closed position, closing said valve device (18) and in which said inlet (27c) and said outlet (29a) are isolated from the inside of said container (3), to an open position in which said inlet (27c) and said outlet (29a) communicate with the inside of said container (3). - 14. A kit as claimed in claim 13, characterized in that said valve device (18) comprises elastic means (31) for keeping said control member (30) stably in said closed position in the absence of pressure to said inlet (27c). - 15. A kit as claimed in claim 11, characterized in that said container connection means comprise dispenser unit (40) connectable detachably to said container (3) and having an inlet fitting (53) connected in fluid-tight manner to said inlet (27c) of said valve device (18), and an outlet fitting (50) connected in fluid-tight manner to said outlet (29a) of said valve device (18). - **16**. A kit as claimed in claim **15**, characterized in that said dispenser unit is detachable from said casing. - 17. A kit as claimed in claim 16, characterized in that said seat (7) comprises a base portion (14) having fast-fit fastening means (49) by which to secure said dispenser unit (40) to said 10 casing (6). - **18**. A kit as claimed in claim **17**, characterized in that said fastening means **(49)** comprise a bayonet connection. - **19**. A kit as claimed in claim **17**, characterized in that said fastening means comprise a fast-fit click-on coupling. - 20. A kit as claimed in claim 15, characterized in that said dispenser unit (40) comprises a cavity (48) to which is fitted a neck (16) of said container (3) in an upside down position; said neck (16) defining said opening (17). - 21. A kit as claimed in claim 11, characterized in that at 20 least one of said connecting means (4) and said additional hose (83) is connected to a relief valve (87). - 22. A kit as claimed in claim 11, characterized in that said connecting means (5) comprise a non-return valve. - 23. A kit as claimed in claim 1, characterized in that at least 25 one of said connecting means (4) and said additional hose (83) is connected to a relief valve (87). - **24**. A kit as claimed in claim 1, characterized in that said connecting means (5) comprise a non-return valve. - **25**. A kit as claimed in claim **1** wherein said additional hose 30 **(83)** when not in use is housed in a peripheral groove **(56)** at least partly surrounding the outer casing **(6)**. - **26**. A kit for inflating and repairing inflatable articles; the kit comprising a compressor assembly, a container of sealing liquid, and conduits connecting the container to the compressor assembly and to an inflatable article for repair or inflation, said kit further comprising an outer casing housing said compressor assembly and defining a seat for the container of 8 sealing liquid, said container being housed removably in said seat, and additionally comprising a container connecting conduit connecting said container to said compressor assembly, so that the container, when housed in said seat, is maintained functionally connected to said compressor assembly, said kit further comprising an additional hose cooperating with said inflatable article; and a three-way valve input connected to said compressor assembly, and output connected to said container and to said additional hose to direct a stream of compressed air selectively to said container or to said additional hose. - 27. The kit as claimed in claim 26 wherein at least one of said conduits connecting the container to the compressor assembly and said container connecting comprises a hose. - 28. A kit as claimed in claim 26 wherein said three-way valve is controlled by a selector which can be set to a disabling position, in which operation of said compressor assembly is disabled; to a first enabling position, in which operation of said compressor assembly is enabled, and said container is connected fluidically to said compressor assembly; and to a second enabling position, in which operation of said compressor assembly is enabled, and said additional hose is connected fluidically to said compressor assembly. - 29. A kit as claimed in claim 26, wherein said valve device comprises at least one control member movable, in response to pressurization of said compressed-air feed line, from a closed position, closing said valve device and wherein said inlet and said outlet are isolated from the inside of said container, to an open position in which said inlet and said outlet communicate with the inside of said container (3). - **30**. A kit as claimed in claim **26**, wherein said valve device comprises a spring for keeping said control member stably in said closed position in the absence of pressure to said inlet. - 31. A kit as claimed in claim 26 wherein said additional hose when not in use is housed in a peripheral groove at least partly surrounding the outer casing. * * * * :